当前位置:贝登书院>女生耽美>兰若蝉声> 第八十四章 自古情关最凶险 而今少侠且留心(下)
阅读设置(推荐配合 快捷键[F11] 进入全屏沉浸式阅读)

设置X

第八十四章 自古情关最凶险 而今少侠且留心(下)(3 / 3)

《孙子算经》,《五曹算经》这两部书主要讲得是一次方程,内容有三元以上一次方程组。但是既然是一次方程,加加减减也就解决了,所以我们认为其大概相当于小学内容。《九章算术》和《海岛算经》属于第二难度梯队,通过之前我们举过的例题,大家也可以大概了解到其中难度,主要是开平方,开立方,算方圆面积,锥柱体积,三角计算,测量代换,还有一些简单的极限应用这类的题目。这两本书的内容基本要学三年。

《缉古算经》这本书需要特别介绍一下。这是唐代国子监算学教授,相当于现在中科院院士级别的国宝数学家王孝通亲自编写的教材。所以这本书应该是唐代算学的核心教材,需要细嚼,因此需要学三年。这本书的主要内容仍属于初等数学范畴,王孝通本人最拿手的问题是解多元三次方程。算经里有很大篇幅,都是解三次方程的。

在这样一部重量级作品的陪衬下,我们可以看到一本更超然的存在——《缀术》,这本书要学四年!!!

《缀术》这本书的具体内容,现在已经失传,失传的原因是:学官莫能究其深奥,是故废而不理。也就是说,教数学的老师都看不懂,最后只能丢在一边。这里面提到的“学官”不是别人,正是唐朝的国宝数学家王孝通,他对《缀术》的评价是:其祖暅之《缀术》,时人称之精妙,曾不觉方邑进行之术全错不通。“全错不通?”还是他理解不了?按照今天的观点来看,很可能是后者。

中国的科学并非一直在进步,有时也会有逆流。尤其是四次最大的,断崖式的退步,直接造成了中国工业革命晚于西方。在本文之后的一些内容里,会细数这四次断崖式退步。但是在本节,我们可以先揭晓其中之一——盛唐的数学灾难。

唐代数学一哥王孝通,二号人物李淳风,这两个人的算学大概在什么水平?先说这李淳风,他理解不了刘徽的割圆术,对《九章算术注》大肆批判,他的论点差点亡了割圆法。提到刘徽割圆,也要顺便讲一下阿基米德,毕竟阿基米德年代更早一些。阿基米德也割圆,但是他没有归纳出割圆公式,也没有提出类似极限的思路,而是一步一对比。所以阿基米德割圆数所给出的答案,估算出的圆周率精度其实并不高。而刘徽割圆这个思路更近似于高等数学,但是到了唐代就差点传不下去。李淳风看不懂刘徽的注解,王孝通算是能看懂一些,但是他的《缉古算经》虽然号称集大成作,却被今人诟病,除了在解三次方程领域,主体内容并没有超出《九章算术》,而且例题的选用编排还远远不及。通过这两点我们可以看出,公元七世纪的唐朝,数学水平已经退步到了公元三世纪。

但总得来说,初等的代数几何问题,《九章》本来就解决了,三角测量问题在《海岛》中也已经被剖析的很深。那么究竟还有什么幺蛾子数学命题能够让王孝通这种级别的数学家感到无法理解呢?那就只有高等数学了。事实上,刘徽割圆法,本文主要人物祖暅之所提出的组暅原理,都是微积分的初步。《缀术》在这个问题上明显进了一步,按照《梦溪笔谈·象数》的说法:前世修历,多只增损旧历而已,未曾实考天度。其法须测验每夜昏晓夜半月及五星所在度秒,置簿录之。满五年,其间剔去云阴及昼见日数外,可得三年实行,然后以算术缀之,古所谓“缀术”者此也。也就是说,缀术是根据常年观察,反向函数拟合,对天文尺度进行计算的一门学问。本作第一章中出现过的祖氏观星台,就是根据这一描述设定的。而函数建模拟合,更是高等数学里的精尖问题。本作《缀术》五章,就是从,微分,积分,消未知数偏微分,微分方程还原函数,以及函数分析,五个方面还原其术的。

唐朝初期的国子监曾经试图推广过《缀术》,但是因为从上到下所有算学学者都看不懂,最终,唐代学子侥幸地摆脱了被高等数学支配的大恐怖。

???

上一页 目录 +书签 下一章