从地位上说,氧气顶吹转炉技术的核心前置科技,就是工业级空气分离设备。
历史上,第一台真正意义上的制氧机诞生于1903年末,应用于金属的气焊和切割,后来随着氮肥工业高速发展,逐渐对氮气产生极大需求,制氧机开始生产氧气与氮气,改名空气分离设备。
空气分离设备工作原理非常简单,利用液态氧气与液态氮气沸点不同,对空气进行低温处理,精馏分离,最终得到高纯度氧气与高纯度氮气,以及其他有用气体。
目前,全世界还没有一台真正意义上的工业级空气分离设备,所有空分设备还处于小型水平,其氧气产量为每小时5—10立方米左右,远远无法满足大规模氧气炼钢的需求,达不到工业级标准。
2t级氧吹炉氧气消耗量约为每吨金属1.5立方米/每分钟,冶炼时间为20分钟左右,总耗氧量高达60立方米。
一边是180立方米的泳池,一边是每小时5—10立方米左右的小水管,两者之间的差距达到36—18倍区间,不可谓不大。
想要达到氧气炼钢的标准,空分设备氧气产量必须提升两个数量级。
余华目标是研制出每小时氧气产量达到1000立方米以上的空分设备,如此,方可满足计划之中的2t级实验氧吹炉。
不过,当务之急还是先搞定氧枪。
空气分离设备是氧吹炉技术的核心前置科技,而氧枪以及耐火材料是氧吹炉本身的核心技术。
一环扣一环,每一个地方都不能马虎。
办公室内,余华伏桉工作,面容认真,双手拿着笔和工具在图纸上不断作图,这是三孔氧枪喷头法兰零件的设计参数和尺寸数据,为了满足供氧强度和压力,喷头法兰零件的材质采用铸铁和电炉钢两种,经过埋弧焊工艺实现密封和连接。
法兰零件图纸画出,余华启用思维计算机,眼神透出一抹绝对理性的色彩,脑海之中构建法兰零件的数学模型,而后载入基准材料和结构,以及高压氧气数据,接着开始计算模拟。
计算模拟铸铁法兰和电炉钢法兰的炉内工作状况和数据。
这是余华独一无二的优势,无数科学家梦寐以求的能力。
数学模型中,一股高压纯氧沿中心管高速前进,似如湍流般汹涌澎湃,来到喷头法兰部位后,对铸铁材料的法兰施加巨大压力。
铸铁虽然不及电炉钢,但也能轻松承受这股高压气态纯氧所产生的压力,在铸铁法兰工作一秒后,数学模型引入新的变量因素——炉内工作环境。
火红色转炉出现,高达一千多摄氏度的钢水,时时刻刻向外释放高额热量,空气迅速升温加热,笼罩采用铸铁材料制作的法兰。
“卡擦!”在低温冷却水和高温热浪双重影响下,铸铁迅速产生变化,强度和硬度以肉眼可见的速度降低,仅仅过了十数秒,铸铁法兰产生一道裂纹,高压纯氧和低温冷却水随即泄露。
数学模型计算终止。
“铸铁不行,看来只能用电炉钢了。”余华对于铸铁法兰的模拟数据并不意外,面色平静,脑海分析这些模拟计算数据后,给出一个初步结论,而后开始进行电炉钢材料的法兰数学模型计算。
铸铁和电炉钢两种材料的力学性能明显不同,而余华之所以要做两种数学模型计算的缘故,只为了查看铸铁材料能否满足使用。
莫得办法,根据地穷,中华穷,铸铁成本和电炉钢成本完全是两个概念,如果铸铁材料能满足法兰盘的使用环境,那就没有必要耗费珍贵的电炉钢。
可惜,铸铁法兰的结果没有令余华惊喜。
数学模型计算再次启动,高压纯氧和炉内工作环节等等现实变量因素出现,这一次,采用电炉钢材料的法兰盘,在近乎真实环境下稳定运行,工作时间达到十个小时以上。
“材料力学数据合格,安全压力余量充足,在有冷却水的情况下,电炉钢法兰能长时间运行,在没有冷却水的情况下,大概十分钟就会因为高温而改变自身材料特性,不过,十分钟已经足够喷头损毁几百次。”跑了一遍动态计算模拟的余华,得出电炉钢法兰的材料力学数据和各项参数,退出消耗巨大的思维计算机模式,默默思索。
这份计算数据表明,法兰设计没有问题,必须采用电炉钢材料。
喷头法兰搞定,整个氧枪研制项目基本宣告结束,余华在图纸上标注零件规格和材料要求,而后打开装满数十份设计图纸的抽屉,将这张法兰设计图折叠整理,放入其中。
抽屉里这些设计图纸全是关于氧枪的图纸,包括整体三视图、喷头设计图纸、枪身设计图纸等等,千万别以为数十份很多,事实上,这个年代搞技术开发的工程师和学者,图纸消耗动辄几十上百公斤。
是的,几十上百公斤。
这还不算多,如果是那种超高难度且结构复杂的工程项目,图纸消耗量甚至能达到吨级标准。
对比同时代的同行们,余华这几十份图纸,已经算超级勤俭节约的级别。
而这些,全都依赖于思维计算机和思维近似物理系统。
“氧枪算是搞定了,趁着现在还有精